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Introduction

Co�ee is one of the most important global commodities 
providing a livelihood to millions of people in developing 
countries (Davis et al. 2012). �e crop is the world’s favorite 
beverage consumed by about one-third of the world’s popu-
lation (Davis et al. 2012, Ovalle-Rivera et al. 2015, Legesse 
2017). Arabica co�ee Co�ea arabica L. (hereafter referred to 
as co�ee) is native to Ethiopia where the crop is highly sensi-
tive to warming temperatures making its cultivation vulner-
able to a changing climate (Davis et al. 2012, Craparo et al. 
2015, DaMatta et al. 2018). According to ICCP report 
(2021), global temperature will increase by the year 2050 
between 1.5� C (optimum scenario) and 4.5� C (worst sce-
nario). Regional warming and erratic rainfall have already 
increased the frequency of poor harvests and this has a�ected 
co�ee productivity (DaMatta et al. 2018). On top of that, ris-
ing temperatures, frequent droughts and increasingly erratic 
weather patterns are predicted to reduce the overall land suit-
able for growing Arabica co�ee in Ethiopia by 50% between 
2040 and 2070 (Ovalle-Rivera et al. 2015, Moat et al. 
2017). Nearly half of the current co�ee growing areas would 
lose 20–40% climate suitability, mainly in areas of low to 
medium elevations (Ovalle-Rivera et al. 2015). Hence, in 
the context of observed and predicted climatic changes, con-
tinuous adaptation will remain a major challenge for co�ee 
production. �e sustainable cultivation of co�ee, includ-
ing productivity and quality, and other ecosystem functions 
are the result of complex spatio–temporal interactions of 
climatic, topographic, edaphic and biological components 
(Bosselmann et al. 2009, Teodoro et al. 2010, Jha et al. 2011, 
Bertrand et al. 2016, Cerda et al. 2017, DaMatta et al. 2018, 
2019), which make the prediction of the impact of climate 
change complicated.

�ere are mainly two opportunities to reduce the nega-
tive impacts of high temperatures on co�ee production. �e 
�rst option is moving its cultivation areas to higher elevations 
as suitability moves upslope to compensate for the increased 
temperatures (Ovalle-Rivera et al. 2015, Moat et al. 2017) 
or to switch to other species (Davis et al. 2012; but currently 
not yet an option) and the second option is via managing 
the canopy shade and subsequent cooling of the understorey 
microclimate ( De Frenne et al. 2019). Shifting co�ee-grow-
ing areas upslope might bring con�icts with protected areas 
with high conservation values or other land uses with crops 
in higher demand than co�ee (Magrach and Ghazoul 2015). 
Besides, it can induce adverse socio-economic and environ-
mental impacts associated with deforestation for new co�ee 
cultivation (Meyfroidt et al. 2013) and open land at high 
elevations might be remote or too steep for growing co�ee 
(Bunn et al. 2015, Schroth et al. 2015). �e second option 
(manipulating sub-canopy microclimate), therefore, becomes 
the most realistic opportunity left in the e�ort to compen-
sate the microclimate (air and soil temperature, soil water 
availability) of the cropping areas caused by global warm-
ing (Davis et al. 2012) and more practicable for the small-
holder co�ee growers. �is choice can typically be applied by 

smallholders using an agroforestry system with multi-strata 
canopy architecture (Ovalle-Rivera et al. 2015).

Many studies suggested that growing co�ee along with 
shade trees is more resilient and productive (Avelino et al. 
2007, Cerda et al. 2017, DaMatta et al. 2018, Semedo et al. 
2018). Most importantly, optimizing shade levels can mod-
ulate soil moisture and temperatures which in turn could 
in�uence co�ee ecophysiological parameters in the face of 
the changing climate. �e e�ects of shade on microclimate 
and co�ee plant performance will thus depend on the eleva-
tion, but this is rarely assessed together. Besides, elevational 
gradients can also be used as space-for-time substitution 
procedure to study the e�ects of changing temperatures (De 
Frenne et al. 2013). However, there are also some tradeo�s 
and negative e�ects of shade on short-term productivity and 
performance of the understorey plants (Blaser et al. 2017, 
2018). �e decrease in crop yield and quality is likely to 
occur as the trees canopy cover increases as a consequence of 
competition for light, water and nutrients.

Understanding how environmental change in�uence plant 
traits variability and resource use across environmental gradi-
ents is fundamental in co�ee plant performance. We focus on 
four key leaf traits: leaf C and N concentrations, stable carbon 
isotopic composition (� 13C) to determine intrinsic water use 
e�ciency (WUEi) and speci�c leaf area (SLA). SLA is a ratio 
indicating how much leaf area a plant builds with a given 
amount of leaf biomass (Wilson et al. 1999, Hulshof et al. 
2013, Rosbakh et al. 2015). Likewise, WUEi re�ects a bal-
ance between carbon assimilation and water consumed via 
evaporation (Bchir et al. 2016, Liu et al. 2018). At the leaf 
level, WUE responses to plant water status can be easily mea-
sured using gas exchange measurements for short time inter-
vals; however, to qualify the responses in a wider time scale, a 
more detailed analysis of leaf isotopic composition of carbon 
(� 13C) would be of particular research interest (Bchir et al. 
2016). Hence, these key leaf traits are proxies that help to 
assess e�ects of environmental changes on growth of plants 
(DaMatta et al. 2018). Finally, leaf N and C/N ratios re�ect 
the general nutrient status of the plants in terms of nitro-
gen supply. �ere is an emerging interest in these key co�ee 
leaf traits to environmental conditions along abiotic gradi-
ents in ecological research (Gagliardi 2014, Gagliardi et al. 
2015, Dickinson 2017), providing a new approach to fully 
understand how plants respond to a range of environmental 
gradients. Variation in these functional leaf traits across envi-
ronmental gradients like climate (Nicotra et al. 2010); soil 
fertility status (Jager et al. 2015) and local light availability 
(Gagliardi et al. 2015) underpin rates of ecosystem function-
ing, through di�erences in resource capture, storage and use. 
�ese again determine the carbon assimilation capability of 
the entire crop that mainly a�ects the �nal yield of the plant 
(in this case, co�ee beans). In the present study, we addressed 
three questions.

1) How does shade tree canopy cover in�uence co�ee leaf 
traits and what does this mean for co�ee plant perfor-
mance and its adaptation potential along elevational 
gradients?
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2) How elevation and canopy cover shape the soil proper-
ties (including soil water condition, temperature and soil 
nutrients)?

3) What are the management implications for smallholder 
co�ee farmers in terms of shade tree canopy cover?

We hypothesized that open tree canopies maintain low 
soil moisture and high soil temperatures in lower elevations, 
while in higher elevations dense shades maintain high soil 
moisture and low soil temperature; both of these assump-
tions could negatively a�ect co�ee plant performance 
and its speci�c leaf traits. In so doing, the e�ect of local-
scale gradient (light and nutrients) induced by shade tree 
canopy cover and large-scale gradients (climato-edaphic) 
induced by elevation on co�ee plant performance in small-
holders’ co�ee farming systems of southwestern Ethiopia  
was explored.

Material and methods

Study area

�e study was conducted in Gomma and Gera districts of 
Jimma Zone, southwest region of Ethiopia (7� 37�48� –
7� 56�37� N, 36� 13�41� –36� 39�17� E) in 59 co�ee farms 
along an elevational gradient ranging from 1500 to 2160 
m a.s.l. �e region is characterized by a humid and warm 
subtropical climate with a yearly rainfall between 1500 and 
2000 mm. �e main rainy season is from May to September 
(monomodal rainfall) accounting for about 85% of the 
annual rainfall and co�ee cultivation in the region is entirely 
rain-fed. Di�erences in temperature vary throughout the year 
with a mean monthly temperature between 13 and 26� C 
(Denu et al. 2016, Geeraert et al. 2019). �e bulk of co�ee 
growing soils in the region are classi�ed as Eutric Nitisols, 
which deep, red and well-drained soils with a clay content 
of more than 30% and a pH (measured in H2O) between 
4.2 and 6.2 (Kufa 2011, Kebede et al. 2018). In terms of 
farming system, the southwestern region of the country is 
characterized by mosaics of farmlands dominated mainly by 
Arabica co�ee farming systems. �e region is known as a pri-
mary center of origin and diversity of co�ee, where the spe-
cies grows naturally as understory tree in moist Afromontane 
forests (Davis et al. 2012, Hundera et al. 2013). Co�ee in 
this region, and in many locations elsewhere in the world, is 
mainly grown under shade trees, either within forest or for-
est-like environments, or in farming systems that deliberately 
incorporate speci�c shade trees. Common co�ee shade tree 
species in Ethiopia include Albizia gummifera, Acacia abys-
sinica, Cordia africana, Croton macrostachyus and Millettia 
ferruginea. �e use of chemical inputs, such as pesticides and 
fertilizers is rare.

Study design (coffee plot selection and 
characterization)

�e study covered agroforestry sites distributed across the 
landscape, comprising an area of approx. 50 by 50 km. In 

order to encompass an elevational and shade tree canopy 
cover gradient, 59 co�ee farms along an elevational gradient 
ranging between 1500 and 2160 m a.s.l. were selected. �e 
sites represented a gradient of co�ee management intensity 
ranging from little interference with the shade trees, leaving 
a dense and diverse shade tree canopy cover, to heavily modi-
�ed sites that used intensive management including inputs 
of herbicides and industrial fertilizers to increase co�ee yield 
(Zewdie et al. 2020). Accordingly, management intensities 
were divided into commercial plantation enterprises (8 of the 
co�ee farms) and smallholder farms (45 of the co�ee farms). 
To avoid spatial autocorrelation, the selected farms were at 
least 3–4 km apart. Sampling was conducted in 30 �  30 m 
co�ee plots per farm, in which 3 co�ee trees were selected 
giving a total of 177 co�ee trees. �e selected 3 co�ee trees 
are far apart from each other with the 30 �  30 m co�ee 
plots at each sites and all of them are consistently positioned 
inside the plantation to avoid edge e�ects. Leaf and soil 
samplings from each co�ee tree were taken at the moment 
when environmental predictors (canopy cover, soil samples 
for soil water availability and nutrient analysis) were mea-
sured. All the measurements and data provided in this manu-
script (nutrient concentrations, shade tree canopy cover, soil 
water content, soil temperatures) are at the individual co�ee 
tree-level.

Environmental drivers

�e following environmental variables were measured to 
describe elevation, shade tree canopy cover, soil microclimate 
and soil properties per co�ee tree.

1) Elevation
�e elevation of each co�ee plot was measured with a 
GPS (Garmin-60).

2) Shade tree canopy cover

a)  Spherical crown densiometer. Shade tree canopy cover 
over each co�ee tree was quanti�ed using a convex 
spherical crown densiometer (Forest densiometers, 
Model A, Bartlesville, OK, USA). �e densiometer 
is made of a small wooden box with a convex mirror 
consisting of a grid of squares; shade tree canopy cover 
is then calculated as the proportion of 96 points that 
was intersected by vegetation times 1.04. �e densi-
ometer was held at breast height and the observer’s 
head was re�ected from the edge of the mirror just 
outside the box. �e curved mirror re�ects the canopy 
above. Above the canopy of each sampled tree (when-
ever needed, a ladder was used), two counts were taken 
and the average was taken.

 b)   Hemispherical photography. In addition to the densiom-
eter measurements, hemispherical pictures were used 
to quantify shade tree canopy cover. Hemispherical 
pictures were taken looking upwards from the centre 
above each co�ee tree, using a hemispherical �sh-
eye lens with camera (Canon DS126091, ICES-003, 
Canon, Japan with Sigma 4.5 mm lens). �e top of 
the picture was oriented towards the North and above 
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each co�ee tree, three pictures were taken. All pictures 
were taken under solidly overcast sky between 09:00 
and 16:00 h. �e analysis was performed in the blue 
colour channel so as to improve the contrast between 
the tree branches, foliage and sky (Jonckheere et al. 
2004, Schleppi et al. 2007). �e pictures were pro-
cessed and analyzed using gap light analyser (GLA, 
available at <http s://g ap-li ght-a nalyz er.so ftwar e.inf 
ormer .com/ 2.0/> ) (Frazer et al. 1999, Jonckheere et al. 
2004, Jarcuska 2008) for total light transmission, 
total di�use light and canopy openness. Because of 
the strong correlation (r �  0.87) of the canopy cover 
measured with the densiometer and calculated from 
the hemispherical photos, we decided to work with the 
canopy cover determined with the densiometer in fur-
ther analyses.

3) Soil moisture, temperature and soil chemical characteristics

a) Soil moisture (gravimetric method). Surface mineral 
topsoil (0–10 cm) was sampled in the dry season in 
November (to re�ect the weather-independent water 
status of the site) using a core sampler after remov-
ing the surface litter and plant debris at three locations 
per co�ee tree (10 cm away from the stem in three 
cardinal directions). �e soil samples were taken dur-
ing the measurement of the canopy cover. �ese three 
samples were pooled into one sample for soil moisture 
content and nutrient analysis. �e mass of the fresh 
soil samples was recorded using a balance immediately 
after sampling. �e samples were oven-dried at 65� C 
for 48 h (Houba et al. 1997, Robertson et al. 1999), 
after which the dry mass was recorded immediately 
to determine gravimetric soil moisture content. Soil 
moisture was computed as (fresh soil mass �  dry soil 
mass)/dry soil mass) �  100).

 b)   Soil temperature. To quantify the microclimate in each 
co�ee farm, soil temperatures were recorded at a 3-h 
interval between January 2019 and January 2020 using 
miniature temperature sensors iButton (type DS192H; 
Maxim/Dallas Semi-conductor Corp., USA) buried in 
the soil at 10 cm depth and 40 cm distance from the 
co�ee trees. To ensure the best representation of tem-
perature experienced by the co�ee plant, the daily min-
imum, mean and maximum temperature values were 
computed in such a way that the daily mean tempera-
tures were calculated as the average of the daily maxi-
mum and daily minimum temperatures. Likewise, the 
monthly mean temperatures are calculated as means 
of the daily mean temperatures per month. Monthly 
minimum and maximum temperatures were also cal-
culated. Finally, the annual maximum and minimum 
temperatures were calculated as the maximum and 
minimum temperatures of the year whereas annual 
mean temperatures were calculated as the average of 
the mean temperatures of all the months. �e annual 

mean, minimum and maximum temperatures were 
used in the data analyses.

 c)   Soil chemical characteristics. For each soil sample, an 
oven-dried sub-sample was used for the measurements 
of soil carbon, total N, Olsen-P, Ca, Mg and K. All the 
soil samples were dried to a constant weight at 65� C 
for 48 h, ground and sieved over a 2 mm mesh. For 
soil total C and N, the soil samples were combusted at 
1200� C and the gases were measured by a thermal con-
ductivity detector in a CNS elemental analyzer (vari-
omax Cube, Elemental, Germany). Olsen-P which 
is a measure for available P for plants (Gilbert et al. 
2009) was extracted in NaHCO3 (according to ISO 
11263:1994 and calorimetric measurement accord-
ing to the malachite green procedure (Lajtha et al. 
1999, Robertson et al. 1999). Soil total Ca, K and 
Mg were measured by atomic absorption spectros-
copy after complete destruction of the soil samples 
with HClO4 (65%), HNO3 (70%) and H2SO4 (98%) 
inte�on bombs for 4 h at 150� C. Exchangeable K+, 
Ca2+, Mg2+, Na+ and Al3+ concentrations were mea-
sured by atomic absorption spectroscopy (AA240FS, 
Fast Sequential AAS) after extraction in 0.1 M BaCl2 
(NEN 5738:1996).

Response variables: coffee leaf sampling and 
measurements

Five photosynthetically active, large and fully expanded, 
healthy leaves from actively growing shoots were sampled for 
each of the 177 trees. To determine SLA, the area of all the 
�ve leaves together was computed using a smart cell phone 
camera on white paper with a calibrated 2 �  2 cm red paper 
square (Easlon and Bloom 2014). �ese images were analyzed 
with ImageJ ver. 1.46 software (available at <http s://b sapub 
s.onl ineli brary .wile y.com /doi/ full/  10.3732/apps.1400033� )
to determine leaf area. �e leaves were oven-dried at 65� C for 
48 h, after which the dry weight of the leaves was recorded. 
Speci�c leaf area was then calculated as the area divided by 
the oven dry weight across these �ve leaves. After SLA mea-
surements, co�ee leaf samples were then ground into a �ne 
powder and stored for the measurements of � 13C, and total 
C and total N. Both leaf C and N were measured using an 
elemental analyzer (ANCA-SL, PDZ Europa, UK) coupled 
to an IRMS (20–22, SerCon, UK).

Carbon stable isotope was analyzed using an ANCA-
GSL elemental analyzer interfaced with a 20–22 IRMS with 
SysCon electronics (SerCon, Cheshire, UK). �e samples are 
measured relative to laboratory standards, which are adjusted 
to sample size and a quality assurance (QA) sample was ana-
lyzed every 10 samples. �e natural abundance (� ) of 13C 
was expressed as parts per mill (‰) relative to their interna-
tional standards Vienna Pee Dee Belemnite (VPDB), where 
� 13C �  [(Rsample �  Rstandard)/Rstandard] �  1000 (‰), and R is the 
molar ratio of 13C/12C in a sample or a standard.
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For 13C the VPDB, was used using WHEAT IA-R001 
(� 13C-VPDB �  � 26.43 �  0.08‰, calibrated by Iso-
analytical toward IAEA-N-1 and IAEA-CH6, respectively) 
and an in house laboratory QA organic reference (EQA-
2018-R2-S2, accepted value � 13C-VPDB �  30.08 �  0.3‰) 
and the � -values for all QA samples were within the accepted 
range for the each sample run. Average standard deviation of 
the measurement was determined by measuring 5 randomly 
selected samples in triplicate and was 0.32‰ for 13C. �e 
� -values for all QA samples were within the accepted range 
for each sample run.

Intrinsic water use ef�ciency (WUEi)

�e intrinsic water use e�ciency (WUEi) was calculated 
according to Farquhar et al. (1982) using the � 13C data.
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where: ‘ci’ and ‘ca’ are the intercellular and atmospheric CO2 
concentration, respectively ‘a’ is the discrimination against 
13CO2 during di�usion through the stomata (value set at 
� 4.4‰), and ‘b’ is the net discrimination during carboxyl-
ation (value set at � 27‰).

Regarding the values of � 13C in the atmosphere, the rela-
tive proportion of � 13Cair is gradually decreasing over time 
(approx. by � 0.025‰ year� 1) and the value was around 
� 8.44‰ in 2019 (year of leaf sample collection) (McCarroll 
and Loader 2004).

�e CO 2 concentration measured at Mahe Island, 
Seychelles (the closest atmospheric CO2 monitoring sta-
tion to Jimma from which we could obtain data) in 2019 
was taken as a starting point for the atmospheric CO2 cal-
culations (Global Monitoring Laboratory 2019). �e latter 
measurements were done at 905 m elevation above sea level 
and a CO2 concentration of 411 ppm on average for 2019 
was reported. �e CO2 concentrations at a speci�c elevation 
were corrected based on Maxwell et al. (2018): atmospheric 
CO2 concentrations decrease with elevation at a rate of 9.5% 
per 1000 m. Accordingly, starting with an atmospheric CO2 
concentration of 411 ppm at 905 m elevation, the relative 
concentration change for each elevation along elevational 
gradients was calculated and these derived atmospheric CO2 
concentrations were used for WUEi calculations at each spe-
ci�c elevation of the co�ee farms.

Data analyses

First, the e�ects of elevation and shade tree canopy cover 
on environmental variables (soil temperatures, soil moisture 

and soil chemical variables) were tested. Second, the e�ects 
of elevation and shade tree canopy cover on our four cof-
fee leaf traits of interest (SLA, leaf WUEi, leaf N content on 
mass basis and leaf C/N) were tested. Finally, relationships 
between the studied co�ee leaf traits, soil chemical variables 
and soil microclimate were tested.

Linear mixed-e�ect models (LMMs) were �tted for all 
analyses and response variables (�rst environmental variables, 
then co�ee leaf traits). For the �rst two analyses, we used 
elevation and canopy cover as �xed e�ect predictors and cof-
fee farm as a random e�ect. Such models allow us to explicitly 
model our structured and nested data, containing clusters of 
non-independent observational units that are hierarchical in 
nature. As co�ee trees were clustered in di�erent farms, the 
variation across these sampling farms is assumed to be random 
and uncorrelated with the predictor variables and therefore 
co�ee farm was included as a random factor in the models. 
Both full and reduced linear mixed models were performed 
in which the full model consisted of elevation, canopy cover 
and elevation-by-canopy cover interactions as �xed e�ects in 
linear mixed-e�ect models. For all models, the random-e�ect 
variable ‘co�ee farm’ was considered as a random intercept. 
All the data were summarized to the tree level (n �  177). �e 
models were then �tted using maximum-likelihood meth-
ods in the ‘lme4’ packages using the lmer function (Harrison 
2015, Harrison et al. 2018). �e p-values of the �xed e�ects 
(elevation, canopy cover and their interaction) and the over-
all model signi�cance were estimated based on the denomi-
nator degrees of freedom calculated with the Satterthwaite 
approximation, in the ‘lmerTest’ package (Bates et al. 2018). 
Normality of the response variables was checked using the 
hist function prior to statistical analysis and it was only spe-
ci�c leaf area (SLA) that was subsequently log-transformed. 
Model assumptions were checked after �tting the models 
and for all models, the distributions of error terms (residuals) 
were approximately normal having constant variance, with 
zero means, an indication of adequate model �t (Nakagawa 
and Schielzeth 2013). To test the explanatory power of sev-
eral di�erent predictor variables for the variation in response 
variables, the coe�cient of determination (R2) was quanti�ed 
using the r.squaredGLMM function in the package ‘MuMIn’ 
(Barton and Barton 2015). Accordingly, both marginal and 
conditional R2 values were determined to describe the pro-
portion of variance explained by the �xed e�ects alone as well 
as the �xed and random factors, respectively (Nakagawa and 
Schielzeth 2013).

Finally, we tested the e�ects of the environmental predic-
tors (soil chemical and microclimatic variables) and co�ee 
management intensity (plantation + smallholders) on the 
SLA, leaf WUEi, leaf N and leaf C/N values. For this, �rst 
principal component analyses (PCA) were conducted to 
reveal groupings and relationships between the main envi-
ronmental predictor variables for soil temperatures and soil 
chemical variables separately. To select prominent variables 
for subsequent regression analyses, the �rst two principal 
components from soil temperatures were taken (Supporting 
information). Likewise, the �rst two principal compo-
nents from soil chemical variables were taken (Supporting 
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information). We retained the soil moisture as a �nal 
environmental predictor variable (without PCA analysis). 
�en, the score values obtained from the above consid-
ered principal components, and the soil moisture variable, 
were utilized as independent variables in LMM to identify 
the main driving variables determining SLA, leaf WUEi, 
leaf N and leaf C/N using the backward variable selection  
procedures. For the analysis of principal components, the 
function prcomp was used from the packages ‘factoextra’ and 
‘stats’.

�e R function fviz was used to create a ggplot2-based 
visualization in the biplot analysis. To produce plotting, 
the R function ggplot was used from the packages ‘ggplot2’ 
and ‘broom’. To combine multiple graphics, the package 

gridExtra was utilized. R ver. 3.6.1 (� www.r-project.org� ) 
was used for all analyses.

Results

In�uence of elevation and shade tree canopy cover on 
soil microclimate and soil chemical variables

Interactive e�ects of elevation and shade tree canopy cover 
had a signi�cant and strong impact on mean soil temperature 
(Table 1, Fig. 1a). When both elevation and shade tree canopy 
cover increased, the mean soil temperature showed a linear 
decline. Likewise, Olsen-P decreased with increasing elevation 
(Table 1, Fig. 1b). Contrarily, soil C/N was largely controlled 

Table 1. Effects of elevation and canopy cover (and their interaction) on soil chemical variables, soil moisture and soil microclimate. Results 
from mixed-effect models in which farm was fitted as a random intercept in the models. The p-values in bold are two-tailed at 0.05 from the 
linear mixed-effect model, Marg. R2 is the proportion of variance explained by the fixed effects only (i.e. elevation and canopy cover) 
whereas Cond. R2 is the proportion of the variance explained by both fixed and random effects (by the whole model), both marginal and 
conditional R2 values were given only for the full models. Tmin=minimum soil temperature; Tmean �  mean soil temperature; Tmax �  maxi-
mum soil temperature; Soil N �  soil nitrogen; Soil C/N �  soil carbon to nitrogen ratio; Olsen-P �  soil phosphorus; Soil N/P �  soil nitrogen to 
phosphorus ratio; Soil Mg �  soil magnesium.

Environmental variable Explanatory variable Effect estimate F (p-value) 
Explained variance

Marg. R2 Cond. R2

Tmin (� C) Elevation � 0.002 0.762 (0.384)
Canopy cover � 0.002 3.692 (0.057)
Elevation �  canopy cover � 0.001 3.722 (0.056) 0.098 0.365
Intercept  9.255

Tmean (� C) Elevation � 0.005 9.448 (0.003)
Canopy cover � 0.009 0.412 (0.522)
Elevation �  canopy cover � 0.009 0.844 (0.002) 0.616 0.749
Intercept  25.26

Tmax (� C) Elevation � 0.007 1.995 (0.001)
Canopy cover � 0.043 0.442 (0.007)
Elevation �  canopy cover  0.005 0.214 (0.645) 0.129 0.327
Intercept 42.27

Soil moisture (kg water kg� 1 dry soil) Elevation 0.001 3.144 (0.078)
Canopy cover 0.113 0.513 (0.475)
Elevation �  canopy cover 0.0002 0.015 (0.901) 0.523 0.648
Intercept � 5.658

Soil N (%) Elevation 0.005 0.007 (0.561)
Canopy cover 0.002 0.048 (0.015)
Elevation �  canopy cover 0.005 0.001 (0.990) 0.037 0.255
Intercept 0.54

Soil C/N (ppm) Elevation � 0.008 3.276 (0.181)
Canopy cover 0.013 0.826 (0.002)
Elevation �  canopy cover 0.003 1.462 (0.228) 0.085 0.503
Intercept 15.92

Olsen-P (mg kg� 1) Elevation � 0.083 0.730 (0.008)
Canopy cover � 0.239 0.430 (0.261)
Elevation �  canopy cover 0.002 0.255 (0.138) 0.037 0.292
Intercept 61.45

Soil N/P (ppm) Elevation 0.004 0.194 (0.041)
Canopy cover 0.002 0.024 (0.074)
Elevation �  canopy cover 0.005 0.082 (0.938) 0.048 0.616
Intercept 0.01

Soil Mg (mg kg� 1) Elevation � 0.007 0.003 (0.747)
Canopy cover 0.033 0.176 (0.013)
Elevation �  canopy cover 0.002 0.040 (0.841) 0.038 0.398
Intercept 5.087
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by shade tree canopy cover and increased with increasing 
shade tree canopy cover (Table 1, Fig. 2c). Similarly, soil Mg 
increased with increasing canopy cover (Table 1, Fig. 1d).

In�uence of elevation and shade tree canopy cover 
on coffee leaf traits

Elevation and shade tree canopy cover signi�cantly and interac-
tively a�ected WUEi (Table 2). As elevation increased, WUEi 
kept increasing at light shade levels (canopy cover �  35%) and 
the values decreased as canopy cover increased at high eleva-
tions; however, it seems constant at intermediate canopy cover 
when elevation kept increasing (Fig. 2). �is suggests that 
co�ee plants growing at high elevations with light shade can 
assimilate more CO2 with minimum evaporative water loss. 
SLA was in�uenced by elevation, and leaf N and leaf C/N 
were strongly in�uenced by canopy cover (Table 2, Fig. 2b).

Establishing the relationships among leaf traits, soil 
chemical variables and soil microclimate

As indicated in the Supporting information, the �rst prin-
cipal component axis account for the largest variance in the 
data set (71 and 46%, respectively). PCtemp 1 was most 

strongly correlated with mean temperatures, PCtemp2 posi-
tively with minimum and negatively with maximum tem-
peratures. PCsoil1 was most strongly correlated with soil Ca 
and Mg, while PCsoil2 was strongly correlated with soil N:P 
ratios (positive) and Olsen P (negative). Soil moisture and 
PCtemp1 were found to have strongly negative and positive 
relationship, respectively with SLA (note that only 8.1% of 
the variation in SLA could be explained by these variables) 
(Table 3). Similarly, soil moisture, PCtemp1 and PCtemp2 
were found to have strongly negative relationship with WUEi. 
On the other hand, soil moisture was found to have strongly 
negative relationship and PCsoil1 had strongly positive rela-
tionship with leaf N. PCsoil1 and PCtemp1 were found to 
have strongly positive relationship with leaf C/N (explaining 
38.35% of the variation in leaf C/N data). Hence, soil chemi-
cal variables and temperatures in�uenced leaf C/N positively.

Discussion

Intrinsic water use ef�ciency (WUEi) and SLA as 
in�uenced by elevation and forest canopy cover

Data on the interactive e�ects of elevation and shade tree 
canopy cover on co�ee leaf traits and soil moisture, chemistry 

Figure 1. Relationship between (a) Tmean (mean soil temperature) and (b) Olsen-P with elevation and (c) soil C:N (soil carbon to nitrogen 
ratio) and (d) soil Mg (soil available Mg) with canopy cover. Data points represent a particular response variable at a single co�ee shrub 
(n �  177) whereas the �tted linear trend lines indicate signi�cant (p �  0.05) relationships; Marg. R2 is the proportion of variance explained 
by the �xed e�ects (i.e. elevation and canopy cover) whereas Cond. R2 is the proportion of the variance explained by both �xed and random 
e�ects (by the whole model). Both Cond. and Marg. R2 values are given for the full models (in our case the full model at elevation �  canopy 
cover), hence, graphs in (b), (c) and (d) from are the reduced models.
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and microclimate is critical to better understand and opti-
mize management of co�ee agro-ecosystems. Soil tempera-
tures decreased with increasing elevation, but canopy cover 
provided strong bu�ering e�ects, an e�ect which increased 
with elevation. Temperature lapse rate was thus steeper in 
deep shade than in the open. �e carbon isotope composition 
is an indirect measure of WUEi as well as stomatal conduc-
tance and it is an integrative manner to describe di�erences in 
water use strategies (Hultine and Marshall 2000, Wang et al. 
2007, Seibt et al. 2008, Moreno-Gutierrez et al. 2012, 
Bchir et al. 2016). �is is particularly crucial to predict how 
co�ee plants may respond to future climate change. In our 
study, SLA was in�uenced only by elevation whereas WUEi 
was slightly in�uenced by the interaction e�ect of elevation 
and shade tree canopy cover. WUEi showed an increasing 
trend with increasing elevation along with a decreased can-
opy cover (Fig. 2a). Previous studies indicated that WUEi 
related strongly and positively with elevation (Broeckx et al. 
2014, Qiu et al. 2015, Bchir et al. 2016).

Leaves having lower SLA are usually thicker or denser in 
stomata. Variation in both leaf thickness and stomatal density 
are responsible for variation in SLA and this is modi�ed by 
the local environment (Wilson et al. 1999, Taugourdeau et al. 

2014). Higher SLA at lower elevations could imply a reduced 
drought stress, and an increased leaf water content of the 
co�ee plant. SLA negatively correlated with WUEi, imply-
ing that a decrease in SLA may be a disadvantage for CO2 
uptake in that thicker leaves have a greater demand for CO2 
per unit leaf area due to a greater stomatal density (Li et al. 
2006, Rosbakh et al. 2015, Bucher et al. 2016). �e higher 
the stomatal density, the more CO2 can be taken up and the 
more water can be transpired. Hence, higher stomatal den-
sity might encourage the potential control over water loss 
rate and CO2 uptake because it ensures adjustments of gas 
exchange in response to environmental changes in the short 
term. An increase in soil temperature can increase leaf (tis-
sue) temperature, due to the indirect e�ect of reduced water 
uptake, and this might have a signi�cant in�uence on water 
use and SLA, and a�ect relationships between them. For 
instance, higher soil temperature causes the reduction in 
WUEi through its e�ects on enzyme activity and increase 
water use via the e�ects of increased vapor pressure de�cit 
(Wright et al. 2005, Rosbakh et al. 2015). �us, increased 
solar radiation or higher air temperatures are more likely to 
be causal agents for the increased soil temperatures which in 
turn in�uence water use and SLA.

Figure 2. Relationship between (a) intrinsic water use e�ciency (WUEi) and (b) speci�c leaf area (SLA) with elevation and (c) leaf N con-
tent and (d) leaf carbon to nitrogen ratio (leaf C:N) with canopy cover. Data points represent a particular response variable at a single co�ee 
shrub (n �  177) whereas the �tted linear trend lines indicate signi�cant (p �  0.05) relationships; Marg. R2 is the proportion of variance 
explained by the �xed e�ects (i.e. elevation and canopy cover) whereas Cond. R2 is the proportion of the variance explained by both �xed 
and random e�ects (by the whole model). Both Cond. and Marg. R2 values are given for the full models (in our case the full model at eleva-
tion �  canopy cover), hence, graphs in (b), (c) and (d) from are the reduced models.
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Intrinsic water use ef�ciency and SLA as in�uenced 
by soil temperature

Intrinsic water use e�ciency (WUEi) was higher in more 
open conditions especially at higher elevations. �e pos-
sible explanation for the decline in WUEi values in shaded 
environments could be due to the photosynthetic isotopic 
discrimination against 13CO2 that increases when there is 
ample CO2 available in the air relative to the photosynthetic 

�ux and hence low light levels can increase the discrimina-
tion against � 13C by photosynthesis which is highly related 
with stomatal conductance (Gagen et al. 2011, Moreno-
Gutierrez et al. 2012, Bchir et al. 2016). Water de�cits, 
which increase WUEi, also reduce SLA and this is probably 
one adaptive mechanism to reduce leaf area and transpira-
tion in co�ee plants. On the other hand, cooler temperatures 
result in lower SLA. �is could be regarded as an adaptive 
mechanism, since thinner leaves are able to dissipate heat 

Table 2. Summary statistics of coffee leaf traits with elevation and shade tree canopy cover in which farm was fitted as a random intercept 
in the models. The p-values in bold are two-tailed at 0.05 from the linear mixed-effect model, Marg. R2 is the proportion of variance 
explained by the fixed effects only (i.e. elevation and canopy cover) whereas Cond. R2 is the proportion of the variance explained by both 
fixed and random effects (by the whole model), both marginal and conditional R2 values were given only for the full models. SLA �  specific 
leaf area; Leaf N �  leaf nitrogen content on mass basis; Leaf C/N �  leaf carbon to nitrogen ratio; WUEi �  intrinsic water use efficiency.

Response Effect Effect estimate p-value 
Explained variance (%)
Marg. R2  Cond. R2

SLA (mm2 mg� 1) Elevation � 0.002 0.001
Canopy cover � 0.004 0.463
Elevation �  Canopy cover 0.001 0.844 0.132 0.447
Management Intensity � 0.025 0.147
Intercept 6.566

Leaf N (mg g� 1) Elevation � 0.002 0.146
Canopy cover � 0.004 0.007
Elevation �  canopy cover � 0.004 0.579 0.058 0.311
Management intensity � 0.262 0.142 
Intercept 3.064

Leaf C/N Elevation 0.019 0.929
Canopy cover 0.021 0.005
Elevation �  canopy cover 0.005 0.717 0.061 0.439
Management intensity 0.039 0.640
Intercept 14.21

WUEi (� mol mol� 1) Elevation 0.041 0.027
Canopy cover 1.181 0.023
Elevation �  canopy cover � 0.001 0.016 0.077 0.423
Management intensity 1.622 0.336
Intercept � 0.085

Table 3. Results from a linear mixed effect model for the studied coffee leaf traits using the four score values and soil moisture. Marg. R2 is 
the proportion of variance explained by the four PC’s used as predictors and soil moisture whereas Cond. R2 is the proportion of the variance 
explained by both the PC’s used as predictors and random effects (by the full model), both marginal and conditional R2 values were given 
only for the full models. SLA �  specific leaf area; Leaf C/N �  leaf carbon to nitrogen ratio, Leaf N �  leaf nitrogen content on mass basis; 
WUEi �  intrinsic water use; Soilmoist �  soil moisture; PCsoil1 �  the 1st principal component of soil chemical variables; PCtemp1 �  the 1st 
principal component of soil temperatures; PCtemp2 �  the 2nd principal component of soil temperatures.

Response Predictors
Regression 
coefficient SE

Standardized regression 
coefficient p-value

Explained variance (%)
Marg. R2 Cond. R2

SLA (mm2 mg� 1) PCtemp1 0.019 0.052 � 5.621 0.001 0.08 0.42
Soilmoist � 0.004 0.016 � 0.225 0.005
Intercept 3.015 0.329 9.152

Leaf C/N PCsoil1 0.088 0.058 1.521 0.023 0.38 0.39
PCtemp1 0.139 0.092 1.522 0.049
Intercept 15.125 0.655 23.110

Leaf N conc. (mg g� 1) PCsoil1 0.011 0.006 2.533 0.002 0.06 0.28
Soilmoist � 0.018 0.011 � 1.680 0.016
Intercept 3.218 0.115 136.587

WUEi (� mol mol� 1) PCtemp1 � 0.976 0.606 � 1.611 0.032 0.04 0.38
Soilmoist � 0.149 0.209 � 0.712 0.042
PCtemp2 � 1.262 0.816 � 1.546 0.044
Intercept 67.230 1.110 60.430
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faster than thicker leaves at high temperature (Craufurd et al. 
1999). In other words, the relative magnitude of the e�ects of 
temperature on WUEi and SLA suggests that adaptation to 
high temperature was the dominant environmental response 
in our present study. �us, depending on the environmen-
tal pressures, these diverging responses help co�ee plants to 
maximize the e�ciency of light capture and carbon gain in 
limited light and moisture conditions and this variability 
of plant functional traits, represents the variability of co�ee 
plant functional ecology across varying climato-edaphic con-
ditions in a managed co�ee agroecosystem (Gagliardi 2014). 
Moreover, this plasticity can also re�ect the co�ee plant’s 
capability to adjust to other microclimatic conditions beyond 
light and moisture (Gratani 2014, Martin et al. 2017).

Coffee leaf nitrogen as in�uenced by forest  
canopy cover

Co�ee leaf N and C/N concentrations decreased and 
increased, respectively with increasing canopy cover. Co�ee 
trees under open sky thus has higher leaf N concentrations 
as compared to shade leaves. �is is not unexpected. Leaf N 
concentration are characteristically resource-acquiring traits 
(Gagliardi et al. 2015, Isaac et al. 2017, Buchanan et al. 
2019) and their greater in�uence on photosynthesis is nota-
ble. Although deep shade may facilitate N availability in the 
soil via litter fall which may have enhanced available soil 
N (soil N was strongly and positively in�uenced by shade 
tree canopy cover, Table 1), it might not contribute to the 
enhanced leaf N concentration as the exact pathways of soil 
N transfer from soil to leaves could depend on other com-
plimentary or facilitative in�uences above or belowground 
that control this mechanistic pathway. �e optimum range 
of leaf N concentration in �eld-grown plants is 10–50 mg g� 1 
(Bundt et al. 1997, Cornelissen et al. 2003, DaMatta 2004, 
Tully et al. 2012). �e value of co�ee leaf N concentration 
in this study ranged from 2 to 3.9 mg g� 1 across shade tree 
canopy cover, which is therefore, not within the cited optimal 
range and thus N is probably limiting plant growth here.

Farm-based variability was found to be more important 
than the variability explained by elevation and shade tree can-
opy cover as evidenced from marginal and conditional R2 val-
ues (Table 2). �ese �ndings indicate that in�uences of other 
farm variables (which were not considered in this study, such 
as farm management, co�ee genotype, shade tree species, etc.) 
need to be considered to assess the response of various co�ee 
leaf traits other than elevation and shade tree canopy cover. 
Shade tree species and their diversity is an important factor 
which was not considered in this study. Some shade trees are 
leguminous and some others are non-leguminous. Co�ee 
management intensity is another factor which was not con-
sidered. Among the 59 co�ee plots, eight were from planta-
tion owned by the enterprises, seven were semi-forest owned 
by smallholders, and the remaining 44 were semi-plantations 
owned by smallholders (with a wide range in their manage-
ment). �e plantation enterprises perform periodic prun-
ing, replace the exhausted and diseased co�ee trees by new 

ones and this is less the case for smallholders. Compost and 
manure might be used by some farmers although it is di�cult 
to provide reliable estimates of these inputs. �is is because 
the actual use of these inputs is strongly dependent on their 
availability in the surroundings and individual perceptions of 
the farmers about their use. On the other hand, in agrofor-
estry systems shade trees, co�ee trees and annual crops are 
mixed, but again, their actual rates are unknown and widely 
di�er from farmer to farmer. Weed control is mainly done by 
hand in smallholders and some farmers might use herbicides 
(personal observations). Mineral fertilizers and pesticides are 
rarely used by the smallholders. However, co�ee plantation 
development enterprises apply mineral fertilizers for the pur-
pose of increasing co�ee bean yield (Getachew et al unpubl.). 
�e genetic variation of the co�ee trees and their age is another 
factor (co�ee trees that exist in smallholder farms are exclu-
sively of local varieties and di�er widely in age) where some 
farmers have the experience of changing their co�ee varieties 
occasionally. All the co�ee plantation enterprises on the other 
hand use improved varieties. In this regard, an attempt was 
made to select co�ee trees between ages of 6 and 10 years 
old. Moisture retaining capabilities of the farms might also 
be considered (Getachew et al. ubpubl.). Co�ee farms at low 
elevations lost their moisture at faster rate as compared to 
those at mid and high elevation regardless of the degree of 
shading. Another factor could be the slope of the farms (some 
farms exist at steep slopes and others are at �at lands which 
might control water and nutrient movements). All factors 
can further explain the variation by our random e�ect term 
‘farm’ and should be studied in future research. We acknowl-
edge that there were several limitations to the present study. 
Predominantly, we recognized that air temperature measure-
ments for this study were not available. We installed air tem-
perature loggers but most of them disappeared (probably due 
to theft). Hence, the only option we had was to use data from 
temperature sensors installed belowground. As our �ndings 
suggested the importance of intermediate to dense shade lev-
els for the moderation of the increasing temperatures at lower 
elevations for WUE, our questions and hypothesis raised in 
the introduction section has been fully addressed.

Conclusion

In sum, SLA and WUEi are moderately governed by soil tem-
perature whereas leaf N and C:N are mainly controlled by 
soil temperature and soil chemical variables. �us, at least 
for the conditions of this experiment, it may be concluded 
that the main control on key co�ee leaf traits were exerted 
by the local micro-environmental factors (soil temperature 
and chemical variables). �is study has shown that shade can-
opy cover has signi�cant positive e�ects on co�ee leaf traits 
particularly WUEi and the study demonstrated that WUEi 
could be improved by adjusting shade canopy cover in cof-
fee plants during stressful and high-temperature environ-
ments. �e observation that, on average, shade-tree canopy 
cover of 35–65%, suggests that farmers might maintain such 
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intermediate to dense canopy cover levels at lower elevations 
not only for eco-physiological reasons, but also to modulate 
responses to the increasing temperatures. �is variability 
highlights current limitations in the information that have 
been deemed to be tree-speci�c to be applied to a wide range 
of scenarios. In order to overcome this limitation in informa-
tion, there is a need to expand co�ee research into multi-fac-
torial studies along larger gradients that incorporate analyses 
of various environmental drivers and other tree-level factors 
such as co�ee shade tree species, and farmers’ plot manage-
ment practices (such as fertilization). It can be concluded that, 
at lower elevations, shade canopy cover has a positive impact 
on co�ee leaf attributes, and hence optimal agronomic shade 
management for improved resource use, and recommenda-
tions regarding shade management should be targeted site-
speci�c climatic and other environmental conditions.
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